George Kokkoris received B. Sc. in Chemical Engineering from the National Technical University of Athens (NTUA) in 1998, Masters in Microelectronics in 2000 from the National & Kapodistrian University of Athens and the Ph.D. in 2005 from NTUA. He is a Research Associate at the Institute of Nanoscience & Nanotechnology of the National Center for Scientific Research (NCSR) "Demokritos".

contact information:
Institute of Nanoscience & Nanotechnology, NCSR Demokritos
153 10 Aghia Paraskevi
Athens - Greece
e-mail: g.kokkoris@inn.demokritos.gr , g.kokkoris@gmail.com
tel: +30 210 6503238

 

research interests

  • simulation of plasma and chemical vapor deposition processes for micro- and nano-fabrication

  • multiscale modeling of plasma etching [tool scale (www.plasma-r.com), feature scale (www.phietch.org) and nano-scale] and chemical vapor deposition processes

  • mechanisms for surface roughness formation during plasma etching processes

  • line edge roughness (LER) transfer during plasma etching

  • simulation of physical and chemical processes in microfluidic devices (e.g. microPCR, micromixers)

  • computational analysis of wetting phenomena on rough surfaces

 

publications

    69. G. Kaprou, V. Papadopoulos, D. Papageorgiou, G. Papadakis, S. Chatzandroulis, G. Kokkoris, and A. Tserepi “Ultrafast, PCB manufacturable, continuous-flow microdevice for DNA amplification” , Anal Bioanal Chem (2019). [doi link]

    68. V. Krokos, G. Pashos, A. Spyropoulos, G. Kokkoris, A. G. Papathanasiou, A. G. Boudouvis “Optimization of patterned surfaces for improved superhydrophobicity through cost-effective large-scale computations” , Langmuir 35, 6793 (2019) [doi link]

    67. N. Cheimarios, M. Kavousanakis, G. Kokkoris and A. G. Boudouvis “Beware of symmetry breaking and periodic flow regimes in axisymmetric CVD reactor setups” , Computers & Chemical Engineering 124, 124 (2019) [doi link]

    66. G. Memos, E. Lidorikis, and G. Kokkoris, “Surface charging and roughness evolution in plasma based surface engineering of polymeric substrates: The effects of ion reflection and secondary electron emission” , Micromachines 9, 415 (2018) [doi link]

    65. G. P. Chrysinas, G. Pashos, N. Vourdas, G. Kokkoris, V.N. Stathopoulos, and A.G. Boudouvis, “Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates” , Soft Matter 14, 6090 (2018). [doi link]

    64. G. Memos, E. Lidorikis, and G. Kokkoris, “The interplay between surface charging and microscale roughness during plasma etching of polymeric substrates” , J. Appl. Phys. 123, 073303 (2018) [doi link]

    63. S. Mouchtouris and G. Kokkoris, “A generalized electron energy probability function for inductively coupled plasmas under conditions of nonlocal electron kinetics” , J. Appl. Phys. 123, 023301 (2018) [doi link]

    62. S. Mouchtouris and G. Kokkoris, “Multiscale modeling of low pressure plasma etching processes: Linking the operating parameters of the plasma reactor with surface roughness evolution” , Plasma Process. Polym. 14, 1600147 (2017) [doi link]

    61. A. S. Kastania, K. Tsougeni, G. Papadakis, E. Gizeli, G. Kokkoris, A. Tserepi, E. Gogolides, “Plasma micro-nanotextured polymeric micromixer for DNA purification with high efficiency and dynamic range” , Analytica Chimica Acta 942, 58 (2016) [doi link]

    60. N. Vourdas, G. Pashos, G. Kokkoris, A. G. Boudouvis, V. N. Stathopoulos, “Droplet mobility manipulation on porous media using backpressure” , Langmuir 32, 5250 (2016) [doi link]

    59. G. Memos and G. Kokkoris, "Modeling of charging on unconventional surface morphologies of PMMA substrates during Ar plasma etching" , Plasma Process. Polym. 13, 565 (2016) [doi link]

    58. S. Mouchtouris and G. Kokkoris, “A hybrid model for low pressure inductively coupled plasmas combining a fluid model for electrons with a plasma-potential-dependent energy distribution and a fluid-Monte Carlo model for ions” , Plasma Sources Sci. Technol. 25, 025007 (2016) [doi link]

    57. G. Pashos, G. Kokkoris, and A. G. Boudouvis, “Wetting transitions on patterned surfaces with diffuse interaction potentials embedded in a Young-Laplace formulation“ , J. Chem. Phys. 144, 034105 (2016) [doi link]

    56. A. Tserepi, E. Gogolides, A. Bourkoula, A. Kanioura, G. Kokkoris, P. S. Petrou, S. Kakabakos, "Plasma Nanotextured Polymeric Surfaces for Controlling Cell Attachment and Proliferation: A Short Review", Plasma Chem. Plasma P. 36, 107 (2016). [doi link]

    55. N. Cheimarios, G. Kokkoris, and A. G. Boudouvis, "A multi-parallel multiscale computational framework for chemical vapor deposition processes", J. Comp. Sci. 15, 81 (2016) [doi link]

    54. V. E. Papadopoulos, G. Kokkoris, I. N. Kefala, and A. Tserepi, "Comparison of continuous-flow and static-chamber μPCR devices through a computational study: the potential of flexible polymeric substrates", Microfluid. Nanofluid. 19, 867 (2015). [doi link]

    53. I. N. Kefala, V. E. Papadopoulos, G. Karpou, G. Kokkoris, G. Papadakis, and A. Tserepi, "A labyrinth split and merge micromixer for bioanalytical applications", Microfluid. Nanofluid. 19, 1047 (2015). [doi link]

    52. G. Pashos, G. Kokkoris, and A. G. Boudouvis, "Minimum Energy Paths of Wetting Transitions on Grooved Surfaces", Langmuir, 31, 3059 (2015). [doi link]

    51. G. Pashos, G. Kokkoris, and A. G. Boudouvis, "A modified phase-field method for the investigation of wetting transitions of droplets on patterned surfaces", J. Comp. Phys. 283, 258 (2015). [doi link]

    50. G. Kaprou, G. Papadakis, G. Kokkoris, V. Papadopoulos, I. Kefala, D. Papageorgiou, E. Gizeli, A. Tserepi, "Miniaturized devices towards an integrated lab-on-a-chip platform for DNA diagnostics", Proc. SPIE 9518, Bio-MEMS and Medical Microdevices II, 95180G (2015). [doi link]

    49. I. G. Aviziotis, T. Duguet, K. Soussi, G. Kokkoris, N. Cheimarios, C. Vahlas, A. G. Boudouvis, "Investigation of the kinetics of the chemical vapor deposition of aluminum from dimethylethylamine alane: Experiments and computations", Phys. Status Solidi C 12, 923 (2015) [doi link]

    48. N. Kallikounis, G. Kokkoris, N. Cheimarios, A. G. Boudouvis, "Designing non-uniform wafer micro-topography for macroscopic uniformity in multiscale chemical vapor deposition processes", Chem. Vapor Depos. 20, 364 (2014). [doi link]

    47. D. Moschou, N. Vourdas, G. Kokkoris, G. Papadakis, J. Parthenios, S. Chatzandroulis, A. Tserepi, "All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification", Sensors & Actuators: B. Chemical 199, 470 (2014). [doi link]

    46. V. E. Papadopoulos, I. N. Kefala, G. Kaprou, G., Kokkoris, D. Moschou, G. Papadakis, E. Gizeli, A. Tserepi, "A passive micromixer for enzymatic digestion of DNA", Microelectron. Eng. 124, 42 (2014). [doi link]

    45. V. Constantoudis, G. Kokkoris, E. Gogolides, “Resist roughness plays a key role in pattern transfer”, 29 March 2013, SPIE NEWSROOM DOI: 10.1117/2.1201303.004738. [doi link]

    44. N. Škoro, N. Puač, S. Lazović, U. Cvelbar, G. Kokkoris, E. Gogolides, “Characterization of Hydrogen-based RF plasmas suitable for surface cleaning processes: Validation of H atom actinometry in low-pressure H2 plasmas” , J. Phys. D: Appl. Phys. 46, 475206 (2013). [doi link]

    43. D. Moschou , N. Vourdas, M. K. Filippidou, V. Tsouti, G. Kokkoris, G. Tsekenis, I. Zergioti, S. Chatzandroulis, A. Tserepi, "Integrated biochip for PCR-based DNA amplification and detection on capacitive biosensors", Proc. SPIE 8765, Bio-MEMS and Medical Microdevices, 87650L (2013). [doi link]

    42. V. Constantoudis, G. Kokkoris, E. Goggolides, "Three-dimensional geometrical modeling of plasma transfer effects on line edge roughness: comparison with experiments and rules of thumb", J. Micro/Nanolith. MEMS MOEMS 12, 041310 (2013). [doi link]

    41. G. Kokkoris, P. Brault, A. L. Thomann, A. Caillard, D. Samelor, A. G. Boudouvis, C. Vahlas, “Ballistic and molecular dynamics simulations of aluminum deposition in micro-trenches“, Thin Solid Films 536, 115 (2013). [doi link]

    40. E. Goggolides, V. Constantoudis, G. Kokkoris, "Towards an integrated Line Edge Roughness Understanding: Metrology, Characterization and Plasma Etching Transfer", Proc. SPIE 8685, Advanced Etch Technology for Nanopatterning II, 868505 (2013). [doi link]

    39. N. Cheimarios, G. Kokkoris, A. G. Boudouvis, “An efficient parallel fixed point iteration method for multiscale analysis of chemical vapor deposition processes”, App. Num. Math. 67, 78 (2013). [doi link]

    38. M. Vlachopoulou, G. Kokkoris, C. Cardinaud, E. Gogolides, and A. Tserepi, “Plasma etching of poly(dimethylsiloxane): roughness formation, mechanism, control, and application in the fabrication of microfluidic structures”, Plasma Processes and Polymers 10, 29 (2013). [doi link]

    37. N. Cheimarios, G. Kokkoris, A. G. Boudouvis “Multiscale Computational Analysis of the Interaction between the Wafer Micro-Topography and the Film Growth Regimes in Chemical Vapor Deposition Processes“, ECS Journal of Solid State Science and Technology 1, P197 (2012). [doi link]

    36. G. Kokkoris, V. Contstantoudis, E. Gogolides “3d modeling of LER transfer from the resist to the underlying substrate: the effect of the resist roughness”, Proc. SPIE 8328, Advanced Etch Technology for Nanopatterning, 83280V (2012). [doi link]

    35. G. Kokkoris and E. Gogolides, “The potential of ion-driven etching with simultaneous deposition of impurities for inducing periodic dots on surfaces“, J. Phys. D: Appl. Phys. 45, 165204 (2012). [doi link]

    34. N. Cheimarios, S. Garnelis, A. G. Boudouvis, and G. Kokkoris, “A computational framework for multiscale analysis of chemical vapor deposition processes”, European Community of Computational Methods in Applied Sciences (ECCOMAS) NEWSLETTER, November 2011, p. 5.

    33. Y. Ros, G. L. Vignoles, C. Germain, P. Supiot, G. Kokkoris, “Simulation of Chemical Vapor Infiltration and Deposition Based on 3D Images: A Local Scale Approach”, Chemical Vapor Deposition 17, 312 (2011). [doi link]

    32. G. Kokkoris, "Toward control of plasma induced surface roughness: Simultaneous to plasma etching deposition", EPJ Appl. Phys. 56, 24012 (2011). [doi link]

    31. N. Cheimarios, S. Garnelis, G. Kokkoris, A. G. Boudouvis, “Linking the operating parameters of chemical vapor deposition reactors with film conformality and surface nano-morphology”, Journal of Nanoscience and Nanotechnology 11, 8132 (2011). [doi link]

    30. E. Mavraki, D. Moschou, G. Kokkoris, N. Vourdas, S. Chatzandroulis, and A. Tserepi, “A continuous flow μPCR device with integrated microheaters on a flexible polyimide substrate”, Procedia Engineering 25, 1245 (2011). [doi link]

    29. S. Garnelis, N. Cheimarios, G. Kokkoris, A. G. Boudouvis, “Multiscale modeling of chemical vapor deposition of Silicon”, Computer Aided Chemical Engineering 29, 131 (2011). [doi link]

    28. E. Gogolides, A. Tserepi, V. Constantoudis, G. Kokkoris, D. Kontziampasis, K. Tsougeni, G. Boulousis, M. Vlachopoulou, “Controlling roughness: From etching to nanotexturing and plasma directed organization on organic and inorganic materials”, J. Phys. D.: Appl. Phys. 44, 174021 (2011). [doi link]

    27. N. Cheimarios, G. Kokkoris, A. G. Boudouvis, “Multiscale modeling in chemical vapor deposition processes: Coupling reactor scale with feature scale computations”, Chem. Eng. Sci. 65, 5018 (2010). [doi link]

    26. V. Constantoudis, G. Kokkoris, E. Gogolides, E. Pargon, M. Martin, “Effect of resist sidewall morphology on line-edge roughenss reduction and transfer during etching: Is the resist sidewall after development isotropic or anisotropic?”, Journal of Micro/Nanolithography, MEMS, and MOEMS 9, 041209 (2010). [doi link]

    25. N. Vourdas, D. Kontziampasis, G. Kokkoris, V. Constantoudis, A. Goodyear, A. Tserepi, M. Cooke, E. Gogolides, “Plasma directed assembly and organization: Bottom-up nanopatterning using a top-down technology“, Nanotechnology 21, 085302 (2010). [doi link]

    24. V. Constantoudis, G. Kokkoris, E. Gogolides, E. Pargon, M. Martin, “Is the resist sidewall after development isotropic or anisotropic? Effects of resist sidewall morphology on LER reduction and transfer during etching”, The International Society for Optical Engineering, Advances in Resist Materials and Processing Technology XXVII 7639, 76392T (2010). [doi link]

    23. V. Constantoudis, G. Kokkoris, P. Xydi, E. Gogolides, E. Pargon, M. Martin, “Line Edge Roughness transfer during plasma etching: Modeling approaches and comparison with experimental results” , Journal of Micro/Nanolithography, MEMS, and MOEMS 8, 043004 (2009). [doi link]

    22. G. Kokkoris, V. Constantoudis, E. Gogolides, “Nanoscale Roughness Effects at the interface of Lithography and Plasma Etching: Modelling of Line Edge Roughness (LER) Transfer during Plasma Etching”, IEEE Transactions on Plasma Science 37, 1705 (2009). [doi link]

    21. V. Constantoudis, G. Kokkoris, P. Xydi, E. Gogolides, E. Pargon, M. Martin, “Line Edge Roughness transfer during plasma etching: Modeling approaches and comparison with experimental results”, Proceedings of SPIE, The International Society for Optical Engineering 7273, 72732J (2009).

    20. V. Constantoudis, G. Kokkoris, P. Xydi, G. P. Patsis, E. Gogolides, “Modeling of line edge roughness transfer during plasma etching”, Microelectron. Eng. 86, 968 (2009). [doi link]

    19. M. Hauguth, B.E. Volland, V. Ishchuk, D. Dressler, T. Danz, I.W. Rangelow, G. Kokkoris, E. Gogolides, A. Goodyear, M. Cooke, “Integrated plasma processing simulation framework, linking tool scale plasma models with 2D feature scale etch simulator”, Microelectron. Eng. 86, 976 (2009). [doi link]

    18. G. Kokkoris, A. Panagiotopoulos, A. Goodyear, M. Cooke, E. Gogolides, “A global model for SF6 plasmas coupling reaction kinetics in the gas phase and on the surface of the reactor walls”, J. Phys. D: Appl. Phys. 42, 055209 (2009). [doi link]

    17. G. Kokkoris, A. Goodyear, M. Cooke, E. Gogolides, “A global model for C4F8 plasmas coupling gas phase and wall surface reaction kinetics”, J. Phys. D: Appl. Phys. 41, 195211 (2008). [doi link]

    16. G. Kokkoris, N. Vourdas, E. Gogolides, “Plasma Etching and Roughening of Thin Polymeric Films: A Fast, Accurate, In Situ Method of Surface Roughness Measurement”, Plasma Processes & Polymers 5, 825 (2008). [doi link]

    15. G. Boulousis, V. Constantoudis, G. Kokkoris, E. Gogolides, “Formation and metrology of dual scale nano-morphology on SF6 plasma etched silicon surfaces”, Nanotechnology 19, 255301 (2008). [doi link]

    14. D. Drygiannakis, G.P. Patsis, N. Tsikrikas, G. Kokkoris, A. Boudouvis, I. Raptis, E. Gogolides and P. Argitis “Stochastic simulation studies of molecular resists for the 32nm technology node”, Microelectron. Eng. 85, 949 (2008). [doi link]

    13. G. Kokkoris, A. Tserepi, E. Gogolides, “The potential of neutral beams for deep Si nano-structure etching”, J. Phys. D: Appl. Phys 41, 024004 (2008). [doi link]

    12. G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, E. Gogolides, “Dual nano-scale roughness on Si plasma etched surfaces: The role of etch inhibitors”, Phys. Rev. B 76, 193405 (2007). [doi link]

    11. N. Tsikrikas, D. Drygiannakis, G. P. Patsis, G. Kokkoris, I. Raptis, E. Gogolides, “Stochastic simulation of material and process effects on the patterning of complex layouts”, The International Society for Optical Engineering 6518 (part 2), 651836 (2007). [doi link]

    10. D. Drygianakis, M. D. Nijkerk, G. P. Patsis, G. Kokkoris, I. Raptis, L. H. A. Leunissen, E. Gogolides, ”Simulation of the combined effects of polymer size, acid diffusion length and EUV secondary electron blur on resist line-edge roughness”, The International Society for Optical Engineering 6519 (part 2), 65193T (2007). [doi link]

    9. G. Kokkoris, A. G. Boudouvis, E. Gogolides, “Integrated framework for the flux calculation of neutral species inside trenches and holes during plasma etching”, J. Vac. Sci. Technol. A 24, 2008 (2006). [doi link]

    8. G. Kokkoris, A. Tserepi, A. G. Boudouvis, E. Gogolides, “Simulation of SiO2 and Si feature etching for microelectronics and MEMS fabrication: a combined simulator coupling modules of surface etching, local flux calculation, and profile evolution”, J. Vac. Sci. Technol. A 22, 1896 (2004). [doi link]

    7. E. Gogolides, C. Boukouras, G. Kokkoris, O. Brani, A. Tserepi, V. Constantoudis, “Si etching in high-density SF6 plasmas for microfabrication: surface roughness formation”, Microelectron. Eng. 73-74, 312 (2004). [doi link]

    6. A. Tserepi, C. Tsamis, G. Kokkoris, E. Gogolides, A. G. Nassiopoulou, “Fabrication of suspended thermally insulating membranes using frontside micromachining of the Si substrate: characterization of the etching process”, J. Micromech. Microeng. 13, 1 (2003). [doi link]

    5. G. Kokkoris, E. Gogolides, A. G. Boudouvis, “Etching of SiO2 features in fluorocarbon plasmas: Explanation and prediction of gas-phase-composition effects on aspect ratio dependent phenomena in trenches”, J. Appl. Phys. 91, 2697 (2002). [doi link]

    4. G. Kokkoris, E. Gogolides, A. G. Boudouvis, “Simulation of fluorocarbon plasma etching of SiO2 structures”, Microelectron. Eng. 57-58, 599 (2001). [doi link]

    3. E. Gogolides, P. Vauvert, G. Kokkoris, G. Turban, A. G. Boudouvis, “SiO2 and Si etching in fluorocarbon plasmas: A detailed surface model accounting for etching and deposition”, J. Appl. Phys. 88, 5570 (2000). [doi link]

    2. G. Kokkoris,E. Gogolides,A. G. Boudouvis, “SiO2 and Si etching in fluorocarbon plasmas: Coupling of a surface model with a profile evolution simulator”, Microelectron. Eng. 53, 395 (2000). [doi link]

    1. E. Gogolides, P. Vauvert, Y. Courtin, G. Kokkoris, R. Pelle, A. G. Boudouvis, G. Turban, “SiO2 and Si etching in fluorocarbon plasmas: A detailed surface model coupled with a complete plasma and profile simulator”, Microelectron. Eng. 46, 311 (1999). [doi link]

 

theses

 

courses

 

 

 

 

 

 

 

Last updated: January 25, 2018